The article doesn’t go into it, but a key advantage they have is that heat pumps move heat, rather then trying to generate it. So they can move a lot more heat into your house than would be generated by running the electricity they use through a resistor. This makes them effectively more than 100% efficient (the exact amount depends on temperature) as compared with burning a fuel or resistive heat.

You are viewing a single thread.
View all comments View context
6 points
*

I’ve done energy models for houses here in Saskatchewan (~560 tCO2e/GWh) and at the moment, they are not cleaner than heating with natural gas, which is the typical primary heat source. Obviously, it would depend on grid carbon intensity, so there is a level of grid ‘cleanness’ where heat pumps would become cleaner, but that tipping point depends on a number of factors.

You could do a rough estimation with the seasonal heating efficiency of a heat pump based on the heating-degree-days of your location versus a certain efficiency of natural gas furnace. Burning natural gas is about 0.18 kgCO2e/kWh. So, if you have a heat pump that’s 200% seasonally efficient, you’d need the grid carbon intensity to be about 0.38 kgCO2e/kWh (380 tCO2e/GWh) to be equivalent to a 95% efficient natural gas furnace.

permalink
report
parent
reply
7 points
*

The 200% seasonal efficiency is a bit off, Nordic models, measured with the “colder” European climate zone, get 300%+ and have guaranteed output at -25C / -13F. Example model from Mitsubishi:

It’s worse than 5.5x or 4.3x in warmer areas but the right model air source heat pumps work fine down to pretty damned cold. Norway and Sweden have a ton of them as they spend a ton of energy on heating and this saves homeowners a ton of money every year.

Best models optimized for average climate now reach 5.5x or better in the green, moderate zone, SCOP of 4.3 is actually pretty terrible but this one is built to be ice proof.

Example latest bestest heat pump with 6+ seasonal COP:

permalink
report
parent
reply
1 point
*

Nice. Saskatchewan is very cold though (about 6000 heating deg days at 18C where I am and can regularly go under -30C in winter), so 200% would be pretty reasonable for a typical heat pump. As a comparison, Tromsø, in very north Norway is 5600 heating deg days.

permalink
report
parent
reply
1 point

As a warm blooded, middle east dwelling humanoid, WTF is ‘6000 heating deg days’?

I have concluded that the 6000 is not days in a year or degrees of temperature.

permalink
report
parent
reply
7 points

Notable, but outside of very cold climates (which I think I feel safe describing Saskatchewan as being), heat pumps are a LOT more than 200% efficient. In mild climate, they can be 2-4X that.

permalink
report
parent
reply
2 points

Definitely, that’s why I say the seasonal heating efficiency is based on heating-degree-days of the location. I’m not sure they’d get to 2-4x 200% efficient, though. 350% might be more reasonable.

permalink
report
parent
reply
3 points

It gets hard to say because COP varies with climate. But even in SEER ratings, 17-20 are pretty much the norm for modern systems and I have seen as high as 23. That translates to a 4-4.5 COP in an average climate.

But those COPs get higher the more mild your climate – I am somewhere with quite mild winter where we only get a hard freeze once or maybe twice a year, and generally winter low temps are in the 40-50F range.

I believe the theoretical max efficiency for a heat pump is something like 8.8 COP. In a mild climate like mine, where most of the time if your heat is running it’s to heat to ~70ish from an ~50ish outdoor temp, you’re should be getting a lot closer to 7 than you are to 2.

permalink
report
parent
reply

Climate - truthful information about climate, related activism and politics.

!climate@slrpnk.net

Create post

Discussion of climate, how it is changing, activism around that, the politics, and the energy systems change we need in order to stabilize things.

As a starting point, the burning of fossil fuels, and to a lesser extent deforestation and release of methane are responsible for the warming in recent decades:

How much each change to the atmosphere has warmed the world:

Recommended actions to cut greenhouse gas emissions in the near future:

Anti-science, inactivism, and unsupported conspiracy theories are not ok here.

Community stats

  • 4.6K

    Monthly active users

  • 6.7K

    Posts

  • 30K

    Comments

Community moderators