You are viewing a single thread.
View all comments View context
2 points
*

Noone in the right state of mind uses decimals as a formalisation of numbers, or as a representation when doing arithmetic.

But the way I learned decimal division and multiplication in primary school actually supported periods. Spotting whether the thing will repeat forever can be done in finite time. Constant time, actually.

The deeper understanding of numbers where 0.999… = 1 is obvious needs a foundation of much more advanced math than just decimals

No. If you can accept that 1/3 is 0.333… then you can multiply both sides by three and accept that 1 is 0.99999… Primary school kids understand that. It’s a bit odd but a necessary consequence if you restrict your notation from supporting an arbitrary division to only divisions by ten. And that doesn’t make decimal notation worse than rational notation, or better, it makes it different, rational notation has its own issues like also not having unique forms (2/6 = 1/3) and comparisons (larger/smaller) not being obvious. Various arithmetic on them is also more complicated.

The real take-away is that depending on what you do, one is more convenient than the other. And that’s literally all that notation is judged by in maths: Is it convenient, or not.

permalink
report
parent
reply
0 points

I never commented on the convenience or usefulness of any method, just tried to explain why so many people get stuck on 0.999… = 1 and are so recalcitrant about it.

If you can accept that 1/3 is 0.333… then you can multiply both sides by three and accept that 1 is 0.99999…

This is a workaround of the decimal flaw using algebraic logic. Trying to hold both systems as fully correct leads to a conflic, and reiterating the algebraic logic (or any other proof) is just restating the problem.

The problem goes away easily once we understand the limits of the decimal system, but we need to state that the system is limited! Otherwise we get conflicting answers and nothing makes sense.

permalink
report
parent
reply
3 points

The problem goes away easily once we understand the limits of the decimal system, but we need to state that the system is limited!

But the system is not limited: It has a representation for any rational number. Subjectively you may consider it inelegant, you may consider its use in some area inconvenient, but it is formally correct and complete.

I bet there’s systems where rational numbers have unique representations (never looked into it), and I also bet that they’re awkward AF to use in practice.

This is a workaround of the decimal flaw using algebraic logic.

The representation has to reflect algebraic logic, otherwise it would indeed be flawed. It’s the algebraic relationships that are primary to numbers, not the way in which you happen to put numbers onto paper.

And, honestly, if you can accept that 1/3 == 2/6, what’s so surprising about decimal notation having more than one valid representation for one and the same number? If we want our results to look “clean” with rational notation we have to normalise the fraction from 2/6 to 1/3, and if we want them to look “clean” with decimal notation we, well, have to normalise the notation, from 0.999… to 1. Exact same issue in a different system, and noone complains about.

permalink
report
parent
reply
0 points

Decimals work fine to represent numbers, it’s the decimal system of computing numbers that is flawed. The “carry the 1” system if you prefer. It’s how we’re taught to add/subtract/multiply/divide numbers first, before we learn algebra and limits.

This is the flawed system, there is no method by which 0.999… can become 1 in here. All the logic for that is algebraic or better.

My issue isn’t with 0.999… = 1, nor is it with the inelegance of having multiple represetations of some numbers. My issue lies entirely with people who use algebraic or better logic to fight an elementary arithmetic issue.

People are using the systems they were taught, and those systems are giving an incorrect answer. Instead of telling those people they’re wrong, focus on the flaws of the tools they’re using.

permalink
report
parent
reply

Science Memes

!science_memes@mander.xyz

Create post

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don’t throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

Community stats

  • 13K

    Monthly active users

  • 3.4K

    Posts

  • 84K

    Comments