I’m expecting to see dual battery EVs in the not too distant future. A Sodium battery for the primary that gets the most charges and discharges which can be easy and cheaper to replace. Beside that a Lithium battery which would only be drawn from after the Sodium battery was exhausted. This way if you’re doing shallow discharges for your “around town” driving then charging at night, and deep discharges for longer road trips where the energy density of Lithium shines.
Lithium batteries dont like being stored fully charged they will degrade over time.
This is a solved problem. Most EVs won’t let you charge it to the actual 100% level or discharge it to 0.
So only charge it to 80% and pretend 80% is 100%, like iPhones do. Why is that a concern?
I’m still dreaming of seeing EVs with flexible battery space, which users can fill according to their needs.
Like a car comes with space for 10x 10 kWh slots.
If 20 kWh serve your usual needs, the other spaces remain empty.
And if you plan longer trips and don’t want to recharge each 100 miles, you put in additional batteries. Those batteries don’t need to be owned, but can be rented.
Ideally there are lots of battery rental stations, where you can get charged batteries and instead of recharging the batteries in the EV, the rent’n’swap stations recharge them.
During (EV) wise low use times, these stations can provide a buffer to the energy grid.
…one can dream…
Then buy it. No need to rent it then.
The main focus was on flexible energy packs not on the renting, although I’d find it convenient if done right.
Idk about renting, sounds like ass.
A core charge would make more sense, like swapping propane tanks you get a discount for having the empty core with you.
Wpuld you rather purchase an 80 kWh battery, alrhough you need most of the time only 20 kWh or purchase only 20 kWh and rent/swap some batteries when needed?
I’m no talking about renting all battery capacity the whole year, just the extra capacity for the 2-4 weeks in the year when long-distance rides are in the mix.
I’ve seen a video with some electric mopeds that had very easily removable batteries. Like you just pop it out and exchange it at a gas-station equivalent.
It’d be ideal if we could settle on a few sizes - kind of like how we have AA, AAA, C, D, etc. batteries. One can be for such mopeds, one larger for cars and some smaller ones to fill various otherwise empty spaces in a car.
So if your battery goes bad or just want to change its tech you can do that.
For normal city driving you carge the car at home. If you go on a trip make a few stops for charging. If you’re really in a rush, you can always pay a premium for swapping your drained battery for a prefilled one at a gas station equivalent.
To me this seems like the ideal solution for EVs and I wonder what facts make it unrealistic.
It’d be ideal if we could settle on a few sizes - kind of like how we have AA, AAA, C, D, etc. batteries. One can be for such mopeds, one larger for cars and some smaller ones to fill various otherwise empty spaces in a car.
This is precisely where we’re going to get fucked, though, because the modern pathological mindset of every tech company now is to try to build their own proprietary walled fiefdom to try to lock in suckers recurring revenue sources customers and they won’t make their stuff compatible with anyone else’s unless the government forces them to. Maybe if we’re lucky there will be a decade or two of highly public bitching (see also: the Tesla charging connector) until someone eventually capitulates.
You know, putting and removing batteries would be a very tedious task and I really doubt that many owners will bother with it.
also it’s not a trivial task to engineer for swapable EV batteries, doing so comes with a whole host of disadvantages / compromises that don’t make sense for most (I guess) consumers right now. It’s not very different from the phone battery issue, except on a huge scale and with much more severe consequences if things go wrong