You are viewing a single thread.
View all comments
126 points

This is awesome news. Not because of the car, but because it builds the supply lines for an alternative battery chemistry.

People have been using lithium-ion batteries for home and grid storage, which is nuts if you compare it to other battery types. Lithium is expensive and polluting and only makes sense if you’re limited by weight & space. Cheaper batteries, even if they’re bigger/heavier, will do wonders to the economics of sustainable electricity production.

permalink
report
reply
29 points

People have been using lithium-ion batteries for home and grid storage, which is nuts if you compare it to other battery types

Compared to other battery chemistry types using lithium makes tons of sense.

Lead acid type batteries like sealed and AGM are cheap but not power dense and do not offer the same discharge ability that lithium offers without damaging the battery (AGM fixes this but it’s still an issue). Some lead acid batteries require continuous maintenance and vent toxic gasses which may be an issue depending on your encloser.

Nickel cadmium batteries solve a lot of issues that lead acid batteries are plagued with however they suffer from moisture intrusion issues causing self discharge. Nickel cadmium also suffers from memory effect which may completely ruin pour battery depending on your use. The elephant in the room with nickel cadmium is that it’s banned in some countries including the European union due to how toxic cadmium is.

Now with lithium, it’s a very energy dense battery which means you need less batteries to meet a capacity or you can fit more capacity into an encloser. There isn’t any electrolyte or water maintenance you need to worry about. You can discharge and recharge as you wish with minimal damage. Really the only downsides is that they do not like charging in the cold, are just as toxic as cadmium, and are much much much more expensive.

permalink
report
parent
reply
26 points

I find it interesting that, on a post about sodium ion batteries, your comment completely excludes them

permalink
report
parent
reply
15 points

The original comment was about lithium and their popularity for backup power. Sodium ion batteries are so new that you can’t purchase them yet (blueitte supposedly released the NA300 but I can’t find any in stock and it’s no longer on their site).

It wouldn’t be fair to compare a chemistry you cannot purchase and which it’s strengths and weaknesses haven’t been tested outside of controlled laboratory testing.

permalink
report
parent
reply
10 points

Probably because they’re new and the parent comment specifically referred to the cheaper, less energy dense battery types.

permalink
report
parent
reply
14 points
*

I agree that older commercialized battery types aren’t so interesting, but my point was about all the battery types that haven’t had enough R&D yet to be commercially mass-produced.

Power grids don’t care much about density - they can build batteries where land is cheap, and for fire control they need to artificially space out higher-density batteries anyway. There are heaps of known chemistries that might be cheaper per unit stored (molten salt batteries, flow batteries, and solid state batteries based on cheaper metals), but many only make sense for energy grid applications because they’re too big/heavy for anything portable.

I’m saying it’s nuts that lithium ion is being used for cases where energy density isn’t important. It’s a bit like using bottled water on a farm because you don’t want to pay to get the nearby river water tested. It’s great that sodium ion could bring new economics to grid energy storage, but weird that the only reason it got developed in the first place was for a completely different industry.

permalink
report
parent
reply
10 points

Now with lithium… are much much much more expensive

and explosive

permalink
report
parent
reply
7 points

Really the only downsides is that they do not like charging in the cold, are just as toxic as cadmium, and are much much much more expensive.

Seems like some pretty big and numerous downsides lmao

permalink
report
parent
reply
3 points

*enclosure

permalink
report
parent
reply
2 points
Deleted by creator
permalink
report
parent
reply
2 points

Don’t forget the volatility of Lithium batteries if they ever get damaged or punctured.

permalink
report
parent
reply
1 point

What about nickle-metal hydride?

permalink
report
parent
reply
12 points

Lithium makes more sense when weight is an issue, for example when you have to carry the battery around. Sodium batteries could be good for grid storage if they can be implemented as scale cheaply enough, especially using common materials.

permalink
report
parent
reply
3 points
Deleted by creator
permalink
report
parent
reply
1 point

Used car batteries can be reused for storage, so it’s going to require a cost analysis to determine what makes most sense for storage solutions. It’s great if they can use a cheaper sodium battery but we also don’t want to just waste the second hand lithium batteries. It makes sense to use both. At least until there are better recycling options. Also with solid state batteries hopefully coming up soon, it’ll still make sense to find use for the current batteries.

Ideally, home backups should be able to use any battery. Standards for compatibility would be nice.

permalink
report
parent
reply
2 points

A quick wikipedia read implies that sodium-ion batteries could be half or less the cost vs lithium. Also this:

Another factor is that cobalt, copper and nickel are not required for many types of sodium-ion batteries, and more abundant iron-based materials work well in Na+ batteries.

That’s probably most of why it’s cheaper, and it’s also way less damaging to the environment if they truly can be made from mostly sodium and iron.

I’m more concerned about the safety aspects. It seems there are two main types:

  • aqueous - quite safe, but also likely very heavy per unit of energy
  • carbon - high risk (probably similar to lithium)

That’s a big reason why I and probably many others aren’t interested in the current batch of EVs. Yeah they’re pretty safe, but they’re quite violent when they fail. I’d probably buy a sodium-ion EV if it could get 100-150 miles range reliably. That would be absolutely sufficient for my commute, even in the winter, and it would make a fantastic “around town” car when I’m not working.

permalink
report
parent
reply
2 points

Here’s the summary for the wikipedia article you mentioned in your comment:

Sodium-ion batteries (NIBs, SIBs, or Na-ion batteries) are several types of rechargeable batteries, which use sodium ions (Na+) as its charge carriers. In some cases, its working principle and cell construction are similar to those of lithium-ion battery (LIB) types, but it replaces lithium with sodium as the cathode material. Sodium belongs to the same group in the periodic table as lithium and thus has similar chemical properties. In other cases (such as aqueous Na-ion batteries) they are quite different from Li-ion batteries. SIBs received academic and commercial interest in the 2010s and early 2020s, largely due to the uneven geographic distribution, high environmental impact, and high cost of lithium. An obvious advantage of sodium is its natural abundance, particularly in saltwater. Another factor is that cobalt, copper and nickel are not required for many types of sodium-ion batteries, and more abundant iron-based materials work well in Na+ batteries. This is because the ionic radius of Na+ (116 pm) is substantially larger than that of Fe2+ and Fe3+ (6992 pm depending on the spin state), whereas the ionic radius of Li+ is similar (90 pm). Similar ionic radii of lithium and iron result in their mixing in the cathode material during battery cycling, and a resultant loss of cyclable charge. A downside of the larger ionic radius of Na+ is a slower intercalation kinetics of sodium-ion electrode materials.The development of Na+ batteries started in the 1990s. After three decades of development, NIBs are at a critical moment of commercialization. Several companies such as HiNa and CATL in China, Faradion in the United Kingdom, Tiamat in France, Northvolt in Sweden, and Natron Energy in the US, are close to achieving the commercialization of NIBs, with the aim of employing sodium layered transition metal oxides (NaxTMO2), Prussian white (a Prussian blue analogue) or vanadium phosphate as cathode materials.Electric vehicles using sodium-ion battery packs are not yet commercially available. However, CATL, the world's biggest lithium-ion battery manufacturer, announced in 2022 the start of mass production of SIBs. In February 2023, the Chinese HiNA Battery Technology Company, Ltd. placed a 140 Wh/kg sodium-ion battery in an electric test car for the first time, and energy storage manufacturer Pylontech obtained the first sodium-ion battery certificate from TÜV Rheinland.

article | about

permalink
report
parent
reply
3 points

Not just that, we don’t have enough lithium deposits atm to build enough lithium evs to last more than a few decades if we act smart (which we generally do not).

permalink
report
parent
reply
1 point

Cheaper batteries, even if they’re bigger/heavier

Yes, just what we need is more vehicles on the road that weigh as much as a tank but accelerate like a Ferrari. I’m sure that won’t cause any problems.

permalink
report
parent
reply

Technology

!technology@lemmy.world

Create post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


Community stats

  • 17K

    Monthly active users

  • 12K

    Posts

  • 554K

    Comments