Konkret geht es darum, dass nach aktuellen Forschungsergebnissen die Quantenphysik auf imaginÀre Zahlen angewiesen ist und die reelle Quantentheorie Quantenmechanische VorgÀnge nicht korrekt beschreibt.
Quelle: https://www.spektrum.de/news/imaginaere-zahlen-sind-in-der-quantenphysik-unverzichtbar/2141016
Komplexe Zahlen sind toll. Unser Mathelehrer hat uns nur davon erzĂ€hlt, weilâs cool ist.
Gleich mal meinen ehemaligen Prof anklingeln.
Editierung: er fandâs wohl unkĂŒhl um die Uhrzeit, vielleicht war es aber auch nur ein Vorwand um nicht blöd dazustehen.
ImaginÀre Zahlen waren schon sehr sehr lange Bestandteil der Elektrotechnik.
Aber mit der viel cooleren imaginÀren Einheit j, nicht dieses komische i Gedöns
Die Komplexen Zahlen sind auch nur eine Untermenge der reellen 2x2 Matrizen, also lassen sich zumindest so darstellen.
Wenn jemand also behauptet, das es die komplexen Zahlen nicht gibt, sollte man ihn mal Fragen, ob es ĂŒberhaupt die reelen oder ganzen Zahlen gibt.
Sogar bei den natĂŒrlichen Zahlen kann man streiten, weil 3 existiert eben auch nicht physikalisch. Nur 3 Ăpfel beispielsweise.
Zahlen waren schon immer nur Werkzeuge, die weder richtig/falsch oder existent/nicht existent sein können. Die konkreten Konzepte und Ideen dahinter sind das entscheidende. Wie man diese dann darstellt ist nur nebensÀchlich.
Die komplexen zahlen sind ein körper, die 2x2 â-matrizen nicht.
Also untermenge nur im mengentheoretischem sinne aber sie haben stÀrkere algebraische eigenschaften.
Die gesamten 2x2 R Matrizen nicht, aber es gibt eine Untermenge die ein Körper ist und isomorph zu C. NÀmlich alle die sich durch Linearkombination der Einheitsmatrix und der Rotationsmatrix um 90° ergeben.
Also a+ib ~ [[a, -b],[b,a]]
https://math.stackexchange.com/questions/1028371/complex-number-isomorphic-to-certain-2-times-2-matrices#2644514
Das meinte ich mit âuntermenge nur im mengentheoretischem sinne aber nicht im algebraischenâ. Ganz streng genommen nĂ€mlich nicht mal im mengentheoretischen Sinn da der aus [[1,0],[0,1]] und [[0,-1],[1,0]] generierte Körper zwar isomorph zu den komplexen Zahlen ist, aber halt nicht die komplexen Zahlen ist.
Warum 2x2? Du brauchst doch nur 2 Dimensionen fĂŒr Real- und ImaginĂ€rteil, also im Grunde einen Vektor. Ist doch der zweidiminesionale Raum.
Wenn ich mich richtig erinnere, lassen sich komplexe Zahlen so auf 2x2-Matrizen abbilden, dass sowohl Addition als auch Multiplikation der Matrizen wieder die korrekten komplexen Zahlen darstellen, was mit einem Vektor nicht so direkt möglich ist. Dadurch verhalten sich 2x2-Matrizen in vielen FÀllen genau wie komplexe Zahlen.
Was sind denn die komplexen Zahlen die sich âso auf 2x2 Matrizen abbildenâ lassen? Da muss doch vorher was konstruiert worden sein was die Bildmenge ist welche nun mit einem Isomorphismus in die reellen 2x2 Matrizen abgebildet wird.
Die Standardkonstruktion nimmt den R2 und verstattet ihn mit einer Multiplikation um die komplexen Zahlen zu konstruieren. Das ist ein zweidimensionaler Körper.
du brauchst 2x2-Matrizen, damit du sie auch wie komplexe Zahlen miteinander multiplizieren kannst. Eine komplexe Zahl z= a +bi wird dann dargestellt als die 2x2-Matrix
z = (a, -b; b, a) Wenn man zwei solche Matrizen multipliziert, sieht man, dass sich diese Multiplikation genau so wie die Multiplikation von komplexen Zahlen verhĂ€lt. Das ganze ist ĂŒbrigens im Prinzip dasselbe wie der SO(2) zu U(1)-Isomorphismus. Also ja, ich weiĂ auch nicht, was dieser Artikel soll - man kann komplexe Zahlen immer durch reelle 2x2-Matrizen ersetzen.
So ein KÀse, die Standardherleitung der komplexen Zahlen ist der R2 mit entsprechender Multiplikation und Addition keine Matrizen vonnöten, siehe z.B. Rudin.
Ganz streng genommen kannst du auch vektoren miteinander multiplizieren. Sind ja schliesslich 1x2 oder 2x1 Matrizen je nachdem wie du sie drehst. Nennt man inneres bzw. Ă€uĂeres Produkt je nachdem wierum du sie aufstellst.