cross-posted from: https://lemmy.ml/post/14869314
“I want to live forever in AI”
Counterpoint, from a complex systems perspective:
We don’t fully know or are able toodel the details of neurochemistry, but we know some essential features which we can model, action potentials in spiking neuron models for example.
It’s likely that the details don’t actually matter much. Take traffic jams as an example. There is lots of details going on, driver psychology, the physical mechanics of the car etc. but you only need a handful of very rough parameters to reproduce traffic jams in a computer.
That’s the thing with “emergent” phenomena, they are less complicated than the sum of their parts, which means you can achieve the same dynamics using other parts.
Even if you ignore all the neuromodulatory chemistry, much of the interesting processing happens at sub-threshold depolarizations, depending on millisecond-scale coincidence detection from synapses distributed through an enormous, and slow-conducting dendritic network. The simple electrical signal transmission model, where an input neuron causes reliable spiking in an output neuron, comes from skeletal muscle, which served as the model for synaptic transmission for decades, just because it was a lot easier to study than actual inter-neural synapses.
But even that doesn’t matter if we can’t map the inter-neuronal connections, and so far that’s only been done for the 300 neurons of the c elegans ganglia (i.e., not even a ‘real’ brain), after a decade of work. Nowhere close to mapping the neuroscientists’ favorite model, aplysia, which only has 20,000 neurons. Maybe statistics will wash out some of those details by the time you get to humans 10^11 neuron systems, but considering how badly current network models are for predicting even simple behaviors, I’m going to say more details matter than we will discover any time soon.
Thanks fellow traveller for punching holes in computational stupidity. Everything you said is true but I also want to point out that the brain is an analog system so the information in a neuron is infinite relative to a digital system (cf: digitizing analog recordings). As I tell my students if you are looking for a binary event to start modeling, look to individual ions moving across the membrane.
As I tell my students if you are looking for a binary event to start modeling, look to individual ions moving across the membrane.
So it’s not infinite and can be digitized. :)
But to be more serious, digitized analog recordings is a bad analogy because audio can be digitized and perfectly reproduced. Nyquist- Shannon theory means the output can be perfectly reproduced. It’s not approximate. It’s perfect.
https://en.m.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
Yes the connectome is kind of critical. But other than that, sub threshold oscillations can and are being modeled. It also does not really matter that we are digitizing here. Fluid dynamics are continuous and we can still study, model and predict it using finite lattices.
There are some things that are missing, but very clearly we won’t need to model individual ions and there is lots of other complexity that will not affect the outcome.
I heard a hypothesis that the first human made consciousness will be an AI algorithm designed to monitor and coordinate other AI algorithms which makes a lot of sense to me.
Our consciousness is just the monitoring system of all our bodies subsystems. It is most certainly an emergent phenomenon of the interaction and management of different functions competing or coordinating for resources within the body.
To me it seems very likely that the first human made consciousness will not be designed to be conscious. It also seems likely that we won’t be aware of the first consciousnesses because we won’t be looking for it. Consciousness won’t be the goal of the development that makes it possible.
I’d say the details matter, based on the PEAR laboratory’s findings that consciousness can affect the outcomes of chaotic systems.
Perhaps the reason evolution selected for enormous brains is that’s the minimum necessary complexity to get a system chaotic enough to be sensitive to and hence swayed by conscious will.
PEAR? Where staff participated in trials, rather than doing double blind experiments? Whose results could not be reproduced by independent research groups? Who were found to employ p-hacking and data cherry picking?
You might as well argue that simulating a human mind is not possible because it wouldn’t have a zodiac sign.