Obviously.
But at what point does that guidance just become the dataset you removed from the training data?
To get it to run Doom, they used Doom.
To realize a new genre, you’ll “just” have to make that game the old fashion way, first.
But at what point does that guidance just become the dataset you removed from the training data?
The whole point is that it didn’t know the concepts beforehand, and no it doesn’t become the dataset. Observations made of the training data are added to the model’s weights after training, the dataset is never relevant again as the model’s weights are locked in.
To get it to run Doom, they used Doom.
To realize a new genre, you’ll “just” have to make that game the old fashion way, first.
Or you could train a more general model. These things happen in steps, research is a process.
You are completely missing what I’m saying.
I know the input doesn’t alter the model, that’s not what I mean.
And “general” models are only “general” in the sense that they are massively bloated and still crap at dealing with shit that they weren’t trained on.
And no, “comprehending” new concepts by palette swapping something and smashing two existing things together isn’t the kind of creativity I’m saying these systems are incapable of.
What kind of creativity are you talking about then? I’ve also never heard of a bloated model. Which models are bloated?