Avatar

lefty7283

lefty7283@lemmy.world
Joined
92 posts • 159 comments
Direct message

I love procrastinating on processing my images! I got set up early at a dark site last month and decided to shoot the sun while it was still up. There were a shitload of sunspots, including AR3697 in the bottom right. This sunspot group was the one that gave us the wonderful aurora back in May (back when it was known as AR3664)

Places where I host my other images:

Flickr | Instagram


Equipment:

  • TPO 6" F/4 Imaging Newtonian

  • Orion Sirius EQ-G

  • ZWO ASI1600MM-Pro

  • Skywatcher Quattro Coma Corrector

  • ZWO EFW 8x1.25"/31mm

  • Astronomik LRGB+CLS Filters- 31mm

  • Moonlite Autofocuser

  • Astrozap BAADER AstroSolar Density 5 filter

Acquisition:

  • Green filter - 5000 frames at gain 139 and 0.324ms exposure

Capture Software:

  • Captured using sharpcap

Processing:

  • Stacked the best 25% of frames in Autostakkert, 2X resample and autosharpened

  • Colorized using curves in Photoshop

  • More lightness/Hue Adjustments

  • Astrosurface wavelets to remove some grid artifacts from stacking

  • STF applied in pixinsight

  • Annotatation

permalink
report
reply

I love procrastinating on processing my images! I got set up early at a dark site last month and decided to shoot the sun while it was still up. There were a shitload of sunspots, including AR3697 in the bottom right. This sunspot group was the one that gave us the wonderful aurora back in May (back when it was known as AR3664)

Places where I host my other images:

Flickr | Instagram


Equipment:

  • TPO 6" F/4 Imaging Newtonian

  • Orion Sirius EQ-G

  • ZWO ASI1600MM-Pro

  • Skywatcher Quattro Coma Corrector

  • ZWO EFW 8x1.25"/31mm

  • Astronomik LRGB+CLS Filters- 31mm

  • Moonlite Autofocuser

  • Astrozap BAADER AstroSolar Density 5 filter

Acquisition:

  • Green filter - 5000 frames at gain 139 and 0.324ms exposure

Capture Software:

  • Captured using sharpcap

Processing:

  • Stacked the best 25% of frames in Autostakkert, 2X resample and autosharpened

  • Colorized using curves in Photoshop

  • More lightness/Hue Adjustments

  • Astrosurface wavelets to remove some grid artifacts from stacking

def going to be using this for any of my future planetary projects. Shoutout to Tom on the discord!

  • STF applied in pixinsight

  • Annotatation

permalink
report
reply

Looks like a $843 million contract to deorbit it sometime in 2030, and the deorbit vehicle is going to burn up as well. They could maybe just send up a starship without any tiles/flaps at that point? Hopefully some of these commercial LEO stations really get going before then to replace it…

permalink
report
reply

On the last test flight a few weeks ago both the booster and ship did powered soft landings in the ocean (even with the ship’s flap melting a bit)

permalink
report
parent
reply

I’m guessing it’s called that because it’s kinda headphone shaped. It was discovered in the 30’s so I’m assuming only the brightest parts of the nebula were visible to the astronomers.

This image is a combination of false color narrowband images for the nebula itself, plus true color RGB stars (the nebula is mostly red and a little blue in true color). If you zoom in to the center you can see the very blue white dwarf that caused the planetary nebula to form. Also for those curious this is what a single 10 minute long Ha exposure looks like (image total is 83.5 hours exposure). Captured over 33 nights from Jan-May 2024 from a bortle 9 zone.

Places where I host my other images:

Flickr | Instagram


Equipment:

  • TPO 6" F/4 Imaging Newtonian

  • Orion Sirius EQ-G

  • ZWO ASI1600MM-Pro

  • Skywatcher Quattro Coma Corrector

  • ZWO EFW 8x1.25"/31mm

  • Astronomik LRGB+CLS Filters- 31mm

  • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

  • Agena 50mm Deluxe Straight-Through Guide Scope

  • ZWO ASI-290mc for guiding

  • Moonlite Autofocuser

Acquisition: 83 hours 30 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

  • Ha - 238x600"

  • Oiii - 247x600"

  • R - 54x60"

  • G - 53x60"

  • B - 54x60"

  • Darks- 30

  • Flats- 30 per filter

Capture Software:

  • Captured using N.I.N.A. and PHD2 for guiding and dithering.

PixInsight Preprocessing:

  • BatchPreProcessing

  • StarAlignment

  • Blink

  • ImageIntegration per channel

  • DrizzleIntegration (2x, Var β=1.5)

  • Dynamic Crop

  • DynamicBackgroundExtraction 3x

duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

$T * med(model) / model

Narrowband Linear:

  • Blur and NoiseXTerminator

  • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

  • ArcsinhStretch to slightly stretch nonlinear

  • iHDR 2.0 script (low preset) to stretch each channel the rest of the way.

here’s the link to the repo if you want to add it to your own PI install.

RGB Linear:

  • ChannelCombination to combine monochrome R G and B frame into color image

  • SpectroPhotometricColorCalibration

  • BlurXTerminator for star sharpening (correct only)

  • HSV Repair

  • StarXterminator to generate a stars-only image

  • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

  • Invert > SCNR > invert to remove magentas

  • Curves to saturate the stars a bit more

Nonlinear:

  • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease’s palette)

R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

  • NoiseX again

  • Background Neutralization

  • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

  • even more curves

  • Pixelmath to add in the stretched RGB stars only image from earlier

This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

mtf(.005,

mtf(.995,Stars)+

mtf(.995,Starless))

  • Couple final curves

  • Resample to 65%

  • DynamicCrop

  • Annotation

permalink
report
reply

I’m guessing it’s called that because it’s kinda headphone shaped. It was discovered in the 30’s so I’m assuming only the brightest parts of the nebula were visible to the astronomers.

This image is a combination of false color narrowband images for the nebula itself, plus true color RGB stars (the nebula is mostly red and a little blue in true color). If you zoom in to the center you can see the very blue white dwarf that caused the planetary nebula to form. Also for those curious this is what a single 10 minute long Ha exposure looks like (image total is 83.5 hours exposure). Captured over 33 nights from Jan-May 2024 from a bortle 9 zone.

Places where I host my other images:

Flickr | Instagram


Equipment:

  • TPO 6" F/4 Imaging Newtonian

  • Orion Sirius EQ-G

  • ZWO ASI1600MM-Pro

  • Skywatcher Quattro Coma Corrector

  • ZWO EFW 8x1.25"/31mm

  • Astronomik LRGB+CLS Filters- 31mm

  • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

  • Agena 50mm Deluxe Straight-Through Guide Scope

  • ZWO ASI-290mc for guiding

  • Moonlite Autofocuser

Acquisition: 83 hours 30 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

  • Ha - 238x600"

  • Oiii - 247x600"

  • R - 54x60"

  • G - 53x60"

  • B - 54x60"

  • Darks- 30

  • Flats- 30 per filter

Capture Software:

  • Captured using N.I.N.A. and PHD2 for guiding and dithering.

PixInsight Preprocessing:

  • BatchPreProcessing

  • StarAlignment

  • Blink

  • ImageIntegration per channel

  • DrizzleIntegration (2x, Var β=1.5)

  • Dynamic Crop

  • DynamicBackgroundExtraction 3x

duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

$T * med(model) / model

Narrowband Linear:

  • Blur and NoiseXTerminator

  • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

  • ArcsinhStretch to slightly stretch nonlinear

  • iHDR 2.0 script (low preset) to stretch each channel the rest of the way.

here’s the link to the repo if you want to add it to your own PI install.

RGB Linear:

  • ChannelCombination to combine monochrome R G and B frame into color image

  • SpectroPhotometricColorCalibration

  • BlurXTerminator for star sharpening (correct only)

  • HSV Repair

  • StarXterminator to generate a stars-only image

  • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

  • Invert > SCNR > invert to remove magentas

  • Curves to saturate the stars a bit more

Nonlinear:

  • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease’s palette)

R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

  • NoiseX again

  • Background Neutralization

  • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

  • even more curves

  • Pixelmath to add in the stretched RGB stars only image from earlier

This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

mtf(.005,

mtf(.995,Stars)+

mtf(.995,Starless))

  • Couple final curves

  • Resample to 65%

  • DynamicCrop

  • Annotation

permalink
report
reply

Yeah if the smart scope is just doing all the work and spitting out an image on its own that’s fine. Generally as long as you include any kind of info about your processing steps it’s fine, and you can have it be as brief or detailed as you want (I know mine are on the longer side).

Personally I’m all for more detail = better. It’s a lot easier for people to give constructive criticism, and a good enough writeup can serve as a guide for those just learning how to process (and I’m always going back to my old posts just to remember how the hell I even processed a tricky image)

permalink
report
parent
reply

Hi OP can you include acquisition/processing info per rule 5?

permalink
report
reply