Off the Siberian coast, not far from Alaska, a Russian ship has been docked at port for four years. The Akademik Lomonosov, the world’s first floating nuclear power plant, sends energy to around 200,000 people on land using next-wave nuclear technology: small modular reactors.
This technology is also being used below sea level. Dozens of US submarines lurking in the depths of the world’s oceans are propelled by SMRs, as the compact reactors are known.
SMRs — which are smaller and less costly to build than traditional, large-scale reactors — are fast becoming the next great hope for a nuclear renaissance as the world scrambles to cut fossil fuels. And the US, Russia and China are battling for dominance to build and sell them.
That is a particular type of reactor that is in testing.
I doubt it. Unless they have power storage of some kind, like SSR designs where they use a thermal battery of some kind.
The fundamental issue with nuclear power is that it produces a fixed output (which falls over time) which cannot be managed. Aside from just deleting what would otherwise be power (which is where the power storage comes into play)
It’s not impossible though, but then again it’s not impossible for any nuclear plant to store energy.
The small reactors on submarines can maneuver very quickly without causing fuel damage. Less power per core = less heat generation. Large reactors are limited by flux rate because they can have such high localized heating during maneuvering which has the potential to damage fuel. In that sense, SMRs could raise and lower power to meet demand or even operate on full power/standby basis like what gas plants offer during peak load.
I can’t speak to the strategy of an electric utility using SMRs, but to your point, I would think the idea would still be base load. Build a site with the potential for more SMRs to be built to meet demand in the future.
ok so i get what you’re saying here.
But there is a fundamental thing with nuclear power, where the “burn up” of nuclear fuel doesnt change. In a submarine it doesn’t matter because you’re backed by a military force and you use 70-80% or 90+% enrichment, where as on land we have 3-5% upwards of 20% for the higher enrichment stuff these days i believe.
In the water its about safety and ensuring power production, on land it’s about ensuring reliable and efficient power production. The only beneficial way of doing this is electricity storage. If you’re nuclear reactor isn’t producing power and has fuel, you are quite literally burning money. Think about it like diverting gas/coal input into a gas/coal fired power plant when power demands lower, as opposed to just lessening the consumption.
But yes it would be about 100% baseload first and foremost, everything else is a future concern, eliminate as much static load as you can and then deal with the rest in other manners.
Renewables being unable to do base load is just a myth that has been debunked countless times.
renewables can theoretically do baseload. The problem with renewables is that they don’t really have a good pairing with something that would make it SIGNIFICANTLY easier to do.
Nuclear and solar power would make a great pairing for summer time midday peak draws for example. Wind is a good supplementary source. Hydro is a good stored energy source.
You can definitely do full renewable but it will still inevitably be better complimented by some form of baseload plant (i.e. nuclear)
I’ve love for just one of the people anonymously downvoting to chime in. What you wrote is completely accurate but every nuclear-themed post here and on Reddit is downvoted without anyone putting forward a counter-argument.
here https://www.pnas.org/doi/full/10.1073/pnas.1610381114 we can talk about this, feel free to put forward counter arguments, the gist of the cited paper is that previous studies claiming 100% renewable baseload is possible requires sketchy manipulation of the expected demand as well as currently unavailable storage technology on an almost impossible scale. We’re working on all kinds of storage solutions but the reality is we’re not there yet. I’m rooting for molten salt storage or compressed gas storage rather than ramping up more lithium battery storage. Flow batteries are promising as well, but in any case we won’t have enough storage or transmission capability to have a 100% renewable baseload in the next couple of decades.