You are viewing a single thread.
View all comments View context
2 points
*

Would it be possible to create a kind of “formula” to express the abstract relationship of ethical makeup, location, year and field? Like convert a table of population, country, ethnicity mix per year and then train the model on that. It’s clear that it doesn’t understand the meaning or abstract concept, but it can associate and extrapolate things. So it could “interpret” what the image description says while training and then use the prompt better. So if you’d prompt “english queen 1700” it would output white queen, if you input year 2087 it would be ever so slightly less pasty.

permalink
report
parent
reply
0 points

I don’t know, maybe that would work, for this one particular problem. My point is it’s more than that. Even if you go through the trouble of fixing this one particular issue with LLMs, there are literally thousands of other problems to solve before it’s all “fixed”. At some point, when you’ve built and maintained thousands of workarounds, they start conflicting with each other and making a giant spider web of issues to juggle.

And so you’re right back at the problem that you were trying to solve by building the LLM in the first place. This approach is just futile and nonsensical.

permalink
report
parent
reply
3 points
*

Yeah. But maybe this is how you teach an AI a broader understanding of the real world. Or really a slightly less narrow view. Human brains also have to learn and reconcile all these conflicting data points and then create a kind of understanding from it. For any machine learning it would only be an intuitive instinct.

Like you would have a bunch of these “tables” that show relationships between various tokens and embody concepts. Maybe you need to combine different kind of models that are organized and trained differently to resolve such things. I only have a very surface level understanding of how machine learning works so I know this is very speculative. Maybe you’re right and it can only ever reflect the training data. Then maybe you’d need to edit the training data, but you could also maybe use other AIs to “reinterpret” training data based on other models.

Like all the data on reddit, could you train a model to detect sarcasm or lies or to differentiate between liberal, leftist and fascist type of arguments? Not just recognizing the tokens or talking points, but the semantic of an argument? Like detecting a non sequitur. You probably need need “general knowledge” understanding for that. But any kind of AI like that would be incredibly interesting for social media so you client can tag certain posts, or root out bot / shill networks that work for special interests (fossil fuel, usa, china, russia).

So all the stuff “conflicting with each other and making a giant spider web of issues to juggle” might be what you can train an AI to pull apart into “appeal emotion” and “materialistic view” or “belief in inequality” or “preemptive bias counteractor”. Maybe it actually could extract and help us communicate better.

Eh I really need to learn more about AI to understand the limits.

permalink
report
parent
reply
1 point

The broad answer is, I’m pretty sure everything you’ve mentioned is possible, and you’re right in that this is similar to how humans integrate new data. Everything we learn competes with and bolsters every bit of knowledge we already have, so our web of understanding is this ever shifting net of relationships between concepts.

I don’t see any reason these kinds of relationships can’t be integrated into generative AI, they just HAVEN’T yet, and each time you increase how the relationships interact, you’re also drastically increasing the size and complexity of the algorithm and model. I think we’re just realizing that what we have now is OK, but needs to be significantly better before it’s really mind blowing.

permalink
report
parent
reply
0 points
*

You’re just rephrasing the same approach, over, and over, and over. It’s like you’re not even reading what I’m saying.

The answer is no. This is not a feasible approach. LLMs are just parrots and they don’t understand anything. They were essentially a “shortcut” that gets something that acts intelligent without actually having to build something intelligent. You’re not going to convince it to be intelligent. You’re not going to solve all it’s short comings by shoe horning something in. It’s just more work than building actual intelligence.

It’s like if a costal town got overrun by flooding from a hurricane. And some guy shows up and is like “hey, I’ve got a bucket, I’ll just pull all the water to the sea”. And I’m like “that’s infeasible, we need a different solution, your bucket even has fucking holes in it”. And you’re over here saying “well, what if we got some duct tape? And then we can patch the holes. And then we can call our friends, and we can all bucket the water”.

It’s just not happening.

Eh I really need to learn more about AI to understand the limits

Yeah. This. You just keep repeating the same approach over and over without understanding or listening to the basic failings of these chat bots. It’s just not happening. You’re just perpetuating nonsense.

These things are basically slightly more complicated versions of the auto complete in your phone keyboard. Except that they’re fed hug amounts of the internet. They get really good at parroting sentences, but they have no sense of “intelligence” or what they’re actually doing. You’re better off trying to convince your auto correct to sound like Shakespeare than you are to remove the failings like racial bias from things like Gemini and ChatGPT. You can chip at small corners here and there but this is just not the path forward.

permalink
report
parent
reply

Lemmy Shitpost

!lemmyshitpost@lemmy.world

Create post

Welcome to Lemmy Shitpost. Here you can shitpost to your hearts content.

Anything and everything goes. Memes, Jokes, Vents and Banter. Though we still have to comply with lemmy.world instance rules. So behave!


Rules:

1. Be Respectful

Refrain from using harmful language pertaining to a protected characteristic: e.g. race, gender, sexuality, disability or religion.

Refrain from being argumentative when responding or commenting to posts/replies. Personal attacks are not welcome here.


2. No Illegal Content

Content that violates the law. Any post/comment found to be in breach of common law will be removed and given to the authorities if required.

That means:

-No promoting violence/threats against any individuals

-No CSA content or Revenge Porn

-No sharing private/personal information (Doxxing)


3. No Spam

Posting the same post, no matter the intent is against the rules.

-If you have posted content, please refrain from re-posting said content within this community.

-Do not spam posts with intent to harass, annoy, bully, advertise, scam or harm this community.

-No posting Scams/Advertisements/Phishing Links/IP Grabbers

-No Bots, Bots will be banned from the community.


4. No Porn/Explicit

Content


-Do not post explicit content. Lemmy.World is not the instance for NSFW content.

-Do not post Gore or Shock Content.


5. No Enciting Harassment,

Brigading, Doxxing or Witch Hunts


-Do not Brigade other Communities

-No calls to action against other communities/users within Lemmy or outside of Lemmy.

-No Witch Hunts against users/communities.

-No content that harasses members within or outside of the community.


6. NSFW should be behind NSFW tags.

-Content that is NSFW should be behind NSFW tags.

-Content that might be distressing should be kept behind NSFW tags.

If you see content that is a breach of the rules, please flag and report the comment and a moderator will take action where they can.


Also check out:

Partnered Communities:

1.Memes

2.Lemmy Review

3.Mildly Infuriating

4.Lemmy Be Wholesome

5.No Stupid Questions

6.You Should Know

7.Comedy Heaven

8.Credible Defense

9.Ten Forward

10.LinuxMemes (Linux themed memes)


Reach out to

All communities included on the sidebar are to be made in compliance with the instance rules. Striker

Community stats

  • 14K

    Monthly active users

  • 11K

    Posts

  • 257K

    Comments