The renewed focus on reliability is motivated by emerging applications. Imagine a wireless factory robot in a situation where a worker suddenly steps in front of it and the robot needs to make an immediate decision.
This example is a real WTF. I really hope nobody is planning on building safety-critical real-time systems on top of WiFi!
I don’t know about manufacturing environments but I deal with laboratories a lot, and I’m a bit baffled at how quickly lab operators have jumped on battery-operated wifi sensors for lab monitoring systems. I have like three room sensors attached to my EcoBee thermostat at home and I can barely be assed to change the batteries in those things, I cannot imagine dealing with batteries and connectivity troubleshooting for a building full of sensors whose reliable operation is often critical for regulatory compliance. Seems like the perfect application for PoE systems, to me
In industrial there are very few wireless systems unless they are either too remote from the CPU and aren’t safety sensitive. Safety is taken very seriously because any incident can mean injuries/death and ending up in the public eye. Any safety systems are hard wired because of reliability.
If your robot moves around, then it needs a wireless connection. And it doesn’t really get any more reliable than wifi. I’m certainly not going to outsource that to a Verizon cellular connection.
And even for things that can be wired - ethernet is far from reliable. Cables are easily damaged or simply unplugged.
Wifi can work really well, especially with high end networking gear (and not, for example, the wifi access point you get for free from Verizon).
I think you’ve missed the point.
Anything automated that could be a threat needs to have safeguards. Needing constant wifi to prevent death or injury is not an acceptable safeguard.
Consider consumer/professional drones. If they lose connection they have on board protocols to mitigate hazards. Even then they are still governed by laws to isolate then from people because even those safeguards aren’t good enough. Suggesting that a robot could completely rely on wifi is preposterous.
I think the point is that that sort of safety critical stuff should be on board, not relying on a wireless connection.
As someone using various wireless standards over over twenty years and in IT dealing with wifi instability on basically a daily basis. No.
Wifi is a series of compromises to be convenient. It’s “good enough” for most of those but generally and increasingly in newer standards, the compromise is to drop stability for things speed. You’ll see this to be the case in a lot of professional wifi gear that will transfer you to a lower standard if it sees weaker signals to improve stability.
To make that concrete, a problem with wifi in an office is an embarrassing “I’ll call back on my phone” but a factory floor that could be millions of dollars of downtime to restart an entire chain of machines. Hardened industrial wiring and connections is well established and wifi is just not at that level. The poorly formed example of the robot was trying to convey their intention to start addressing that level of hardening.
All that said, based on my experience reading ieee articles this is all exaggerated. in reality we’re probably just getting more stable video calls at higher bandwidths. Still a win for the help desk techs everywhere and people with a heavy wall making Netflix flaky.
I’m guessing the bump to 6GHz means range is even lower. Seems we’re leaning towards a future of hardwired-equivalent speed and reliability… within 1 meter.
I know this is a joke but please do not buy repeaters they do not work how you would expect them to work.
Repeaters take an already weak signal and amplify that signal while increasing the latency. Sure this makes the signal go farther but it doesn’t increase the bandwidth and if you stand in between the originating wifi source and the repeater your device may not migrate to the source wifi even though it might be faster because the reapeter has the illusion of being a better signal because it’s louder.
The better route to go is to use multiple wifi APs through out the building connected back to your router with ethernet.
You could also go with mesh access points but you have to do a lot of research and planning; The two key things to look out for is they mesh system must have a dedicated backhaul and you must place them where each node has an excellent signal to the next node. Since most backhauls run on 5Ghz and 6Ghz this means there shouldn’t be any walls between them.
Exactly. I’m going to be running Ethernet through my house soon, and even if we stay full Wi-Fi, we’ll benefit by having physical cables connecting the APs. I already have a separate AP, just need to run the cables to get a second in our basement where the signal is weak.
That’s an advantage if you utilize it right. Less range means your neighbor’s wifi is less likely to interfere with your own. Multiple access points are a superior way to get coverage of your whole house than some octopus antenna monstrosity.
The inverse square law doesn’t have to be a problem.
I think the prevalence of mesh systems is intended to remedy this. Instead of a single AP that can cover your entire house you can mesh two or three (or more) APs to get the coverage desired.
That’s how I do it, except because I have all these AP’s I just set them up near the devices that will use it and plug them all into the AP’s and use the backhaul which is way more reliable. Phones and tablets are the only things that use the wifi and never really found an issue with speed or reliability since moving to mesh.
Fighting games with Wi-Fi instead of Ethernet? Sounds more like a dream. This genre is particularly demanding on stable low latency connections and current technology absolutely doesn’t offer it. Spreading across frequencies sounds like a latency vs reliability trade-off.
I feel like this is really dependent upon the game. Guilty Gear Strive for instance uses roll back net code and my personal experience playing it online over wifi is that it feels practically identical to playing locally. Here and there I might have minor issues if the person I’m playing against has horrible Ping but for the most part wifi is flawless.
That game does have pretty good netcode, but it cannot do everything. If the Wi-Fi connection drops packets there are bound to be problems even with low ping. Not every Wi-Fi setup is the same and it also depends on your surroundings like the physical distance between devices and how much interference.
Sometimes the issue is only visible for one player. If you can, absolutely do use a wired connection. It will undoubtedly be better even with a good Wi-Fi setup.
Back when 5G cellular was first rolling out, a professor brought in a Qualcomm senior level manager and the topic was how 6G was being developed for long distance low latency capabilities.
How much of that was industry bullshit, no idea but it sounds like they had a pulse on the tech now that we hear about it years later.
And 5G is mostly ass anyway. I feel like LTE is faster and EASILY more reliable everywhere I am. If I lose power at my house, I can barely send text only messages in any app.
What phone are you using? My first 5G phone didn’t support midband 5G, and yeah, my experience was similar. Lowband 5G was maybe slightly faster than LTE, but wasn’t worth the lower battery life, higher heat, and spottier performance that was associated with early 5G radios.
Now I’ve got a phone with midband 5G support and midband 5G kicks the shit out of LTE.
The lowest latency links right now are already wireless point to point links.
In theory the speed of light is higher in free space than it is in copper.
Kudos to the working group.
Glad to see stability and QoS being prioritised over throughput this time around. I feel like once WiFi broke through the 300 Mbps barrier with the 5GHz band, strictly focusing on further improvements in throughput would just yield diminishing returns for most people.
However, latency and signal strength have been notoriously annoying long-term problems that I’m happy to see finally being acknowledged.