Off the Siberian coast, not far from Alaska, a Russian ship has been docked at port for four years. The Akademik Lomonosov, the world’s first floating nuclear power plant, sends energy to around 200,000 people on land using next-wave nuclear technology: small modular reactors.
This technology is also being used below sea level. Dozens of US submarines lurking in the depths of the world’s oceans are propelled by SMRs, as the compact reactors are known.
SMRs — which are smaller and less costly to build than traditional, large-scale reactors — are fast becoming the next great hope for a nuclear renaissance as the world scrambles to cut fossil fuels. And the US, Russia and China are battling for dominance to build and sell them.
One of the less widely discussed issues with nuclear is that the bigger plants are all somewhat unique in their engineering particulars, which makes it more costly to maintain them. SMRs can be more readily standardised, which is expected to improve their economics as well as their cost to maintain.
Renewables being unable to do base load is just a myth that has been debunked countless times.
I’ve love for just one of the people anonymously downvoting to chime in. What you wrote is completely accurate but every nuclear-themed post here and on Reddit is downvoted without anyone putting forward a counter-argument.
renewables can theoretically do baseload. The problem with renewables is that they don’t really have a good pairing with something that would make it SIGNIFICANTLY easier to do.
Nuclear and solar power would make a great pairing for summer time midday peak draws for example. Wind is a good supplementary source. Hydro is a good stored energy source.
You can definitely do full renewable but it will still inevitably be better complimented by some form of baseload plant (i.e. nuclear)
I doubt it. Unless they have power storage of some kind, like SSR designs where they use a thermal battery of some kind.
The fundamental issue with nuclear power is that it produces a fixed output (which falls over time) which cannot be managed. Aside from just deleting what would otherwise be power (which is where the power storage comes into play)
It’s not impossible though, but then again it’s not impossible for any nuclear plant to store energy.
The small reactors on submarines can maneuver very quickly without causing fuel damage. Less power per core = less heat generation. Large reactors are limited by flux rate because they can have such high localized heating during maneuvering which has the potential to damage fuel. In that sense, SMRs could raise and lower power to meet demand or even operate on full power/standby basis like what gas plants offer during peak load.
I can’t speak to the strategy of an electric utility using SMRs, but to your point, I would think the idea would still be base load. Build a site with the potential for more SMRs to be built to meet demand in the future.
That is a particular type of reactor that is in testing.
Can we not standardize the big ones? Their only dependent factor is a big enough water source for cooling, right? Everything else is just land space and supplies.
Yes and no. Currently the rules around nuclear plants are so strict that each installation becomes bespoke, because small changes that are the reality of construction need to get reapproved.
If regulatory bodies were more open to approving acceptable ranges, or being proactive in the design process we could have more standardized designs.
I think the scale of the projects and the amount of time it takes to build gives people time to work things in to the plans. I also imagine it’s affected by the local supply chain.
That being said I’m more on the fence about them after reading about some of the challenges involved in making them economical. Can you imagine a factory recall on a reactor part? And that’s not even talking about nuclear waste disposal which we still haven’t figured out reliably beyond “stick it over there and hopefully it won’t be a problem for a few hundred years.”
The construction projects themselves also typically require upgrades to local infrastructure. I live near the failed nuclear project in SC and they had to upgrade rail infrastructure near my town, they had to build multiple new bridges over the railroad because the clearance wasn’t high enough for some of the prefabricated components that had to be transported to the site by rail, etc.
I think one of the differences is where the construction happens. SMR should be able to come from the factory in more complete modules, vs assembling everything in the field. While it could never do the volume to make it mass production, in theory you could get similar benefits from automation, repetition, controlled environment, etc. Meanwhile site assembly should be corresponding simpler
This is only partially true, France for example has standardized its reactors in the past, with a lot of success, and is planning to do it again for the new projects which are planned in the 2030s. Now it was done in the past with little care for local populations and so on, so we’ll see how it goes. What is true though is that standardization also makes sense when there is a repetitive market foreseen. New nuclear project tend to be announced in small numbers, due to the difficulty of investing so much capital at a time, which makes standardization difficult. Smaller reactors may help, but I remain sceptical with the tech.
They have only one small drawback, which is that they’re nothing but vapourware.
Sadly! I’m not in this field but I had a professor at uni who was involved in these. I wish they were more prevalent
I’ve been following the situation in Canada. Afaik the closest we are to getting SMRs is a plan to supplement power production at the Darlington, Ontario CANDU plant using SMRs of the GE Hitachi design. The utility is seeking regulatory approval on the first of 4, but they haven’t broken ground yet to the best of my knowledge. Each would put out up to 300 Mw, so I guess the completed project would add 1.2 Gw to the grid.
Ontario gets around half its power from nuclear, and the current provincial government is gung-ho on building more capacity. While I am not opposed to the idea (they would need to build more anyway just to maintain that ratio in coming decades), the fact that it comes at the heels of them cancelling nearly every renewable energy project at the beginning of their term adds a sour note. These included those that were actually under construction, and tax money had to foot the bill on broken contracts. It was flabbergasting. I am cautiously optimistic about SMRs but they are still vapourware for the most part at this time.
It’s a known tactic of the fossil fuel industry (and the politicians they own) to push SMRs as a delay tactic, so they can continue to make money from coal and gas for a bit longer. And conservative parties get to play culture war over it, which we know they love to do.
If something real comes out of it then great, but you can’t plan an energy transition based on a technology that isn’t proven yet.
Oh man, that is just depressing. I mean I wouldn’t put it past them. It’s like this whole business with carbon capture.
A couple of years ago, I was driving around the Permian Basin near Midland, Texas. I asked a local about all these gas flares you’d see. He said it’s waste natural gas. They’re drilling for oil, you see, so they just burn it off. When I looked incredulous, he added that it’s better than simply venting it. Methane is a potent greenhouse gas! Well sure, but…
Let’s just say it would take a lot to convince me at this point that the future is carbon capture.
That’s absolutely what’s going on here. the whole “nuclear renaissance” is nothing but a smoke screen.
That just shows that nuclear is nothing but a smokescreen for perpetuating fossil fuels. First they cancel the renewable projects because they have all those fancy new nukes now. Then the nukes never pan out (as they do). Oh shucks, guess we have to keep using coal.
That’s not quite accurate. All the coal power plants in Ontario were shut down about 5-ish years before. Then they had planned more renewable capacity. Then a new leader of the province came in to power (the brother of a famous crackhead mayor), spent money to cancel the projects not with anything to do with nuclear but out of spite of the previous Liberal government.
Second, you look to Germany whose nuclear power plants were shut down which forced them to reopen coal power plants. Yes renewables are coming in hot and it’s the future, but don’t get the timeline twisted just to shift blame on nuclear, especially in my native Ontario.
Indeed yes, the idea of using these technologies to distract from other green energies is a valid concern, but I’ll say that until we have fusion (that is always 20 years away from reality) it takes all kinds of green energy sources to transition.
Yes, Soviet/Russian technology, the posterchild for prudence and carefulness.
When they say small, how small are we talking? The size of a sedan? A school bus?
To my understanding we don’t have an energy problem. We have a problem of industrialization in combination with global capitalistic tendencies. No wonder the article mentions the following:
The International Energy Agency, which outlined what many experts say is the world’s most realistic plan to decarbonize, sees a need to more than double nuclear energy by 2050.
Also, taking into consideration how dangerous nuclear accidents are, not only I don’t feel any safer with this technology -no matter how much it is praised- I feel literally scared when I hear statements like:
But a nuclear renaissance is coming, the IEA says.
The problem as I see it is all your statements are “I feel” and “I fear” with no sources about anything either way.
The following is related to SMRs:
And on the problem of Indutrialization some elements can be found here:
What Are Some of the Drawbacks of Industrialization? - Investopedia
Summary of “Seventeen Contradictions and the End of Capitalism” by David Harvey
Would the above satisfy you @JungleJim?
The risk of anything whatsoever happening to any given individual from nuclear is miniscule compared to the very real risk to literally everyone everywhere posed by coal and gas power…
We’re all on a runaway train barreling towards catastrophe, and you’re essentially saying the bathroom needs a floor mat so someone doesn’t slip and fall. That’s about how the risks compare
If that’s your take on my comment(s), I would suggest you take a 2nd look at them.
statistically they have a point. Coal mining has killed SEVERAL orders of magnitudes more people over its history, even oil and gas are relatively dangerous compared to nuclear. Nuclear is inline with both wind and solar roughly with the amount of yearly sustained injuries.
Also, taking into consideration how dangerous nuclear accidents are, not only I don’t feel any safer with this technology -no matter how much it is praised- I feel literally scared when I hear statements like:
you should look into the stable salt reactor design.
Passively safe, inherently contained, and even when catastrophically failed, not a major concern. Many gen IV designs adhere to these sorts of principles. They’re just inherently safe now. The only way you can fuck them up is by actually just becoming a problem.
Nuclear waste storage is still a problem, but greatly reduced with fast reactor designs. For numerous reasons i won’t get into right now because this comment would be three pages long otherwise.
And besides, if you live near a coal plant you are actively consuming more harmful pollutants than if you were near a nuclear plant. Fun fact the japanese government evacuated people into areas WORSE than the initial areas they were in. This was due to gross negligence, but it was such a minor dosage, it basically didn’t matter anyway.