Remember that, capitalization is important for people looking for those nice profits. And earnings come from differential capitalization. The issue was never that they are or not profitable, but if the ‘big capitalists’ are even willing to participate in making ‘abundance’ even a possibility.
I’m pretty sure that if we put our time and effort in organize ourselves we can handle most of the problem with power, but trying to get them to work in the “green capitalist” way is just not understanding how capitalism works. Its about control of production, not some ambiguous idea of a free-market with god-like awareness.
Hope these technologies develop faster, yet, I know if they are even implemented around the world with the idea to improve peoples lives: will not be under the state of capital.
This article is a joke of renewable propaganda. It makes hypothesis on the worst nuclear trends, and project the renewable trends, ignoring that renewables need fossile to provide consistent output. They also question each and every analysis that pretend nuclear would be good.
This is an anti-nuclear shit post.
Yet studies show that renewables decarbonise faster and the only way for nuclear to complete is basically in a majority renewables grid. Oh, and also be 25% cheaper. Which is not ideal.
renewables need fossile to provide consistent output
If only we had invented energy storage!
Also not even an advantage.
France has nuclear capacity for 550TWh/yr at nameplate for a load of 420-500TWh/yr and several neighboring countries that let them use hydro for storage.
They still produce 40-50TWh from dispatchable sources.
If storage is impossible, then we better build more wind and solar instead of nuclear.
Is that counting the massive storage costs necessary for running a fully renewable grid? Including the low saturation point for cheap storage like pumped hydro and increasing costs with increasing scale due to material shortages? It is definitely cheaper per kwh right now, but we want to know the overall cost going forward.
Are you counting the even higher storage costs for running an all nuclear grid?
Why would an all nuclear grid need more than a day of storage? You just need to match constant supply with a 24 hour demand curve.
(And I doubt anyone’s arguing for an all-nuclear grid, since renewables are so cheap when they’re available. We just need enough dispatchable power on the grid to survive weather events without burning gas.)
Why would an all nuclear grid need more than a day of storage?
Technically they need 200,000 years worth of storage. Although in that case it’s more archival.
And you can’t just balance load with nuclear reactors, they take forever (as in days to weeks) to spool up, you can’t just switch them on. So you’re still going to need some storage capacity and if you’re going to have storage anyway you might as well have a simpler energy generation system to boot without all of the big complicated nuclear reactor equipment.
Plus of course the fact that you can stand up solar panels and wind turbines almost anywhere in 6 months, but you’ll be wrangling for 30 years to build a new nuclear reactor.
Because they have weeks or months long unplanned outages every year, often correlated and are over-concentrated geographically so fail-over requires huge transmission overprovision.
As to that last, building a $20/W generator and keeping it in hot shutdown to use for 200 hours a year costs thousands of dollars per MWh. There are vastly cheaper ways to get 100 hour storage.
New research has brought to light a significant shift in the energy landscape, indicating that renewable energy sources are now proving to be more profitable than nuclear power. This paradigm shift has far-reaching implications for the future of global energy production and sustainability efforts. The research underscores how advancements in technology, increased efficiency, and a rapidly evolving renewable energy sector are making wind, solar, and other clean energy sources not only environmentally responsible but also economically viable. This development not only reinforces the trend towards a greener and more sustainable energy future but also highlights the potential for substantial economic benefits associated with embracing renewables over traditional nuclear power options. As economies transition to cleaner energy alternatives, this research acts as a powerful catalyst for accelerating the adoption of renewable energy technologies on a global scale.
We need to do both. The amount of renewable energy that we need to decarbonize or economy is enormous.
Right now we don’t have the industrial capacity to manufacture the amount of solar panels, wind turbines and batteries needed for the transition. We need to ramp up the production, it means new factories, new trained engineers and technicians, new mines for the ore… All of that takes years or even decades to setup. The estimates I saw for the amount of lithium needed implied that we need to multiply the production by a factor of 20 !! Renewables energy also requires a lot of copper. New mines can take decades to open.
We already have some industrial capacity for building nuclear reactors do we should use it. Same for renewables and ramp up as much as we can.
I’m 2020 this is the world primary energy mix :
- Coal: 27.6%
- Oil: 31.6%
- Gas: 25%
- Nuclear: 4.4%
- Hydropower: 7%
- Wind: 2.6%
- Solar: 1.4%
- Other renewables: 0.5%
Right now fossil fuel are still above 80%, it needs to be close to 0% in 25 years. We need to use all the tools we have available: nuclear, solar and wind.
Is lithium still that important with the new battery technologies emerging?
I’ve been reading that sodium based and even solid state batteries are making leaps and bounds while at the same time we are actively reducing the amount of lithium required to manufacture large capacity batteries, by introducing new formulas based with much cheaper and plentiful elements.
What I would like to see is a ramp up on recycling more and better.
Sodium ion is commercial now and in the scale-up phase. It’s usable for anything a lithium battery was usable for in 2015, but with some advantages (cheaper, longer lasting, shippable fully discharged, less fire-prone). Other grid scale technologies (ZnBr, Fe, NaS, V, Na-flow) are in the demo stage.
In either case the current scale of the lithium battery industry exceeds the scale needed for diurnal grid storage significantly. Mining a kg of lithium is both lower environmental impact and larger in scale of application (in terms of energy per year delivered by the associated system) than mining a kg of Uranium.
You don’t need to remember me the downsides of mining lithium or uranium.
If the numbers are true, my country has the richest reserves of lithium in Europe and one of the richest in the entire world. But the idea of strip minning it does not appeal to anyone and we have a village actively campaigning to not have a mine set up there, regardless the number of jobs ot could bring there.
Regarding uranium, I actually live in an area where it was once mined the land bears the scars. Nobody really remembers how much rock was cut, crushed and hauled away by train in the day.
But this always brings this to mind: why are we not investing in technology to harvest lithium from salt water? I remember hearing it was a viable option growing up.
yes qyron
lithium remains a crucial element in the realm of emerging battery technologies, despite the evolution and diversification of battery chemistries. Lithium-ion batteries, which utilize lithium as a core component, have dominated the energy storage landscape for decades due to their high energy density, reliability, and widespread use in various applications, including consumer electronics, electric vehicles, and renewable energy storage.
I agree, especially with respect to batteries. It’s not about nuclear vs renewables, it’s about nuclear vs batteries. We can probably scale up energy storage to meet the world’s baseload needs - but we haven’t done that before. It might take a long time, we might hit some dead ends, and it might not end up being as cheap as we hope. But we have seen nuclear power on a large scale so we know what it takes. To be certain we can get zero carbon as soon as possible we should pursue every promising avenue.
Also note that the cost of, for example, solar energy has decreased 94% in the last 35 years because we have (rightly) put lots of resources into research and scaling up production. Meanwhile nuclear investment has been way down for decades. Maybe the cost of nuclear would come down with economies of scale, and newer designs.
Diverting resources from solar and wind which are growing ~25-50% and currently 2EJ/yr per year to nuclear is a net loss given that a 20 year build up of the nuclear industry resulted in <1EJ/yr increase in the 80s. By the time any new reactor is online, the annual production of new PV will exceed the entire nuclear fleet builtnover 70 years.
Just the first fuel load for that much nuclear requires more than doubling uranium mining. Not to mention the iridium, gadolinium etc. or anything outside the core. And this is in uranium resources that are significantly worse than those currently being mined.
The “so much copper” for solar is about 0.4kg/kW for distributed (10% of current mining would cover all electricity in 2 years).
Similarly current lithium production is producing about 1TWh/yr of batteries. 10 years of that is overkill for lithium’s role in grid storage (although about an order of magnitude more is needed if the goal is for everyone to have an EV and we ignore sodium ion, both unrelated to cancelling renewable projects and instead pretendingnto build a nuclear reactor).
You’re also making fossil fuels seem like a bigger contributer than they are. 1J of electricity will provide 5J of space heating or the same travel distance as 5-8J burnt to refine petrol and make an ICE car go. 20% hydro/renewables/nuclear means that only 50% of the actual stuff done is via fossil fuels. Which is not to say heat pumps and electrified transport are trivial transitions, but they are necessary either way.