Strange that the article would say that when, in point of fact, the US is also working plans for lunar nuclear power. It’s really the only sensible way to power a moon base with current technology, so anyone who is considering one is working designs for a nuclear power plant.
The big problem with space is overheating. Space may be cold but there is no way to get rid of that heat except for radiators. Convection doesn’t exist in a vacuum.
Only at night.
The lunar exosphere is too skimpy to trap or spread the Sun’s energy, so differences between sunlit and shadowed areas on the Moon are extreme. Temperatures near the Moon’s equator can spike to 250°F (121°C) in daylight, then plummet after nightfall to -208°F (-133°C).
https://science.nasa.gov/moon/weather-on-the-moon/
Which sounds like a pretty big challenge for a nuclear reactor. Maybe they only plan to put them on the poles?
Go Thorium MSR and bury it underground and you don’t really have to worry about it. Might need some modification for moon gravity but otherwise seems like the best bet.
That was my first thought, but then my second thought was even more terrifying - how do you protect your nuclear power facility from celestial impacts? The moon must get pelted with thousands of little bits of space debris every day considering it has no atmosphere. All it would take is a basketball-sized meteorite to slam into the reactor chamber and possibly cause a meltdown.
Heat also dissipates via radiation, not just conduction. I would imagine that nuclear power on the moon won’t involve hauling a lot of liquid coolant/heat exchanger/energy transfer because liquids are wicked heavy, hauling that up to orbit and then landing it is gonna take a lot of energy. They do acknowledge that cooling is an issue they’re working on.
Maybe some kind of RTG? I couldn’t find an article that said what the NASA contractors chose to build.
Not really. Current battery technology is to put it lightly not the type of thing you want to rely on for long term life support. Lithium ion the current go to for rechargeable batteries physically degrades as you charge it. One of the main things you can do to reduce this is don’t fully charge the battery. For example if the battery degradation from 0%* to 100%** is a cycle then 50% to 80% is only 21% of a cycle. That’ll extend the lifetime of the battery (not the capacity) by about 5 times! That’s pretty significant but you lose out on 20% of the batteries capacity permanently, even as the capacity decreases from degradation.
You’ve probably seen the hype about Sodium batteries which are currently 50% less energy dense which just immediately means NOPE for use in space.
* Lithium ion batteries are extremely difficult to actually fully discharge (controller won’t let you)
**Lithium ion batteries should never be fully charged it causes them excessive damage so the controller prevents this from happening
They do it on the ISS though?
Although Li-Ion batteries typically have shorter lifetimes than Ni-H2 batteries as they cannot sustain as many charge/discharge cycles before suffering notable degradation, the ISS Li-Ion batteries have been designed for 60,000 cycles and ten years of lifetime, much longer than the original Ni-H2 batteries’ design life span of 6.5 years.
Electrical system of the international space station, batteries
Also related:
New Space Race while Americans just want healthcare.
Look on the brightside: you can either have no healthcare and no space race or no healthcare and a space race.
Sure you are going to spend your last years dying of a preventable diabetes complication, but at least you get to see cool stuff going on. Instead of dying the same way anyhow and not seeing cool stuff.
If you other people could vote I would really appreciate it.
I’m all for this. This is the beginning of how all wars should be fought: On the moon. With giant robots.
How would you cool a nuclear power plant on the moon, no water?
Good question. Not all reactors by design need water as coolant. Some use molten salt, others are gas cooled.
These alternate cooling materials would likely still need to be imported though, so it doesn’t particularly make it any easier.
My main question is the effect of the lower gravity on cooling the reactor (thermal hydraulic effects). All of our current reactors are designed for 1 g use, not 0.1654 g that’s on the moon. Heat mixture rates in fluids would be different, which is important when you’re calculating effective heat dissipation.
Just for fun, go check out xkcd’s new What If video. They go into heat dissipation of a nuclear reactor in space (not the moon, but still incredibly interesting, informative, and entertaining).
Maybe only turn it on at night when the surface gets cold and conduct it into the ground or land it in a permanent shadow? The article said they planned to do it fully automated so I am guessing digging of any form is out.
With Blackjack! And Hookers!