183 points

Let’s go, already!

How you can help: If you run a website and can filter traffic by user agent, get a list of the known AI scrapers agent strings and selectively redirect their requests to pre-generated AI slop. Regular visitors will see the content and the LLM scraper bots will scrape their own slop and, hopefully, train on it.

permalink
report
reply
54 points

This would ideally become standardized among web servers with an option to easily block various automated aggregators.

Regardless, all of us combined are a grain of rice compared to the real meat and potatoes AI trains on - social media, public image storage, copyrighted media, etc. All those sites with extensive privacy policies who are signing contracts to permit their content for training.

Without laws (and I’m not sure I support anything in this regard yet), I do not see AI progress slowing. Clearly inbreeding AI models has a similar effect as in nature. Fortunately there is enough original digital content out there that this does not need to happen.

permalink
report
parent
reply
27 points
*

Regardless, all of us combined are a grain of rice compared to the real meat and potatoes AI trains on

Absolutely. It’s more a matter of principle for me. Kind of like the digital equivalent of leaving fake Amazon packages full of dog poo out front to make porch pirates have a bad day.

permalink
report
parent
reply
0 points

Well it means they need some ability to reject some content, which means they need a level of transparency they would never want otherwise.

permalink
report
parent
reply
17 points

They’ll just start using a chrome user agent

permalink
report
parent
reply
13 points

Only if enough people do it. Then again, loads scrapers outside of AI already pretend to be normal browsers.

permalink
report
parent
reply
2 points

You can validate that against user telemetry data expected from a browser.

permalink
report
parent
reply
8 points

AI already long ago stopped being trained on any old random stuff that came along off the web. Training data is carefully curated and processed these days. Much of it is synthetic, in fact.

These breathless articles about model collapse dooming AI are like discovering that the sun sets at night and declaring solar power to be doomed. The people working on this stuff know about it already and long ago worked around it.

permalink
report
parent
reply
7 points

Both can be true.

Preserved and curated datasets to train AI on, gathered before AI was mainstream. This has the disadvantage of being stuck in time, so-to-speak.

New datasets that will inevitably contain AI generated content, even with careful curation. So to take the other commenter’s analogy, it’s a shit sandwich that has some real ingredients, and doodoo smeared throughout.

permalink
report
parent
reply
2 points

They’re not both true, though. It’s actually perfectly fine for a new dataset to contain AI generated content. Especially when it’s mixed in with non-AI-generated content. It can even be better in some circumstances, that’s what “synthetic data” is all about.

The various experiments demonstrating model collapse have to go out of their way to make it happen, by deliberately recycling model outputs over and over without using any of the methods that real-world AI trainers use to ensure that it doesn’t happen. As I said, real-world AI trainers are actually quite knowledgeable about this stuff, model collapse isn’t some surprising new development that they’re helpless in the face of. It’s just another factor to include in the criteria for curating training data sets. It’s already a “solved” problem.

The reason these articles keep coming around is that there are a lot of people that don’t want it to be a solved problem, and love clicking on headlines that say it isn’t. I guess if it makes them feel better they can go ahead and keep doing that, but supposedly this is a technology community and I would expect there to be some interest in the underlying truth of the matter.

permalink
report
parent
reply
2 points

I mean, we’ve seen already that AI companies are forced to be reactive when people exploit loopholes in their models or some unexpected behavior occurs. Not that they aren’t smart people, but these things are very hard to predict, and hard to fix once they go wrong.

Also, what do you mean by synthetic data? If it’s made by AI, that’s how collapse happens.

The problem with curated data is that you have to, well, curate it, and that’s hard to do at scale. No longer do we have a few decades’ worth of unpoisoned data to work with; the only way to guarantee training data isn’t from its own model is to make it yourself

permalink
report
parent
reply
0 points

Also, what do you mean by synthetic data? If it’s made by AI, that’s how collapse happens.

But that’s exactly my point. Synthetic data is made by AI, but it doesn’t cause collapse. The people who keep repeating this “AI fed on AI inevitably dies!” Headline are ignorant of the way this is actually working, of the details that actually matter when it comes to what causes model collapse.

If people want to oppose AI and wish for its downfall, fine, that’s their opinion. But they should do so based on actual real data, not an imaginary story they pass around among themselves. Model collapse isn’t a real threat to the continuing development of AI. At worst, it’s just another checkbox that AI trainers need to check off on their “am I ready to start this training run?” Checklist, alongside “have I paid my electricity bill?”

The problem with curated data is that you have to, well, curate it, and that’s hard to do at scale.

It was, before we had AI. Turns out that that’s another aspect of synthetic data creation that can be greatly assisted by automation.

For example, the Nemotron-4 AI family that NVIDIA released a few months back is specifically intended for creating synthetic data for LLM training. It consists of two LLMs, Nemotron-4 Instruct (which generates the training data) and Nemotron-4 Reward (which curates it). It’s not a fully automated process yet but the requirement for human labor is drastically reduced.

the only way to guarantee training data isn’t from its own model is to make it yourself

But that guarantee isn’t needed. AI-generated data isn’t a magical poison pill that kills anything that tries to train on it. Bad data is bad, of course, but that’s true whether it’s AI-generated or not. The same process of filtering good training data from bad training data can work on either.

permalink
report
parent
reply
3 points

It’s kinda interesting in how it actually roughly parallels the dawn of the nuclear age in some specific ways. Namely, that there’s a clear “purity” line established by the advent of the technology - and I mean that literally, not figuratively. Content on the internet is going to have a very similar dividing line. But it’s also going to be way harder to definitively source data from before that line, unless someone clairvoyant happened to offline and archive a huge storage array with a complete internet snapshot right before ML made its public debut. And I know exactly what the scale of that storage commitment would be, and how much it would cost. So I’m certain nobody has done that.

permalink
report
parent
reply
1 point

Are there any good lists of known AI user agents? Ideally in a dependency repo so my server can get the latest values when the list is updated.

permalink
report
parent
reply
-1 points

Okay but I like using perchance cus they dont profit off anything 👉👈

a large chunk of that site is some dudes lil hobby project and its kinda neat interacting with the community and seein how the code works. Its the only bot I’ll ever use cus they arent profiting off of other people shit. the only money they get is from ads and thats it.

Dont kill me with downvotes, I like making up cool OC concepts or poses n stuff and then drawing em.

permalink
report
parent
reply
118 points

It is their own fault for poisoning the internet with their slop.

permalink
report
reply
55 points

In case anyone doesn’t get what’s happening, imagine feeding an animal nothing but its own shit.

permalink
report
parent
reply
19 points

Not shit, but isn’t that what brought about mad cow disease? Farmers were feeding cattle brain matter that had infected prions. Idk if it was cows eating cow brains or other animals though.

permalink
report
parent
reply
17 points

It was the remains of fish which we ground into powder and fed to other fish and sheep, whose remains we ground into powder and fed to other sheep and cows, whose remains we ground to powder and fed to other cows.

permalink
report
parent
reply
18 points

I use the “Sistermother and me are gonna have a baby!” example personally, but I am a awful human so

permalink
report
parent
reply
13 points

Photocopy of a photocopy is my go-to metaphor for model collapse.

permalink
report
parent
reply
3 points

DUDE ITS SO FUCKING ANNOYING TRYNNA USE GOOGLE IMAGES ANYMORE–

ALL IT GIVES ME IS AI ART. IM SO FUCKING SICK AND TIRED OF IT.

permalink
report
parent
reply
80 points

More like… Degenerative AI *ba dum tsss

permalink
report
reply
10 points
*

deGenerative AI ☞ !degenerate@lemmynsfw.com

edit: don’t, if you’re on a bus! i thought lemmynsfw was a warning enough

permalink
report
parent
reply
11 points

No idea this existed.

Also… JFC WHAT THE SHIT?

permalink
report
parent
reply
1 point
Deleted by creator
permalink
report
parent
reply
2 points

comment edited 👍

permalink
report
parent
reply
70 points

Model collapse is just a euphemism for “we ran out of stuff to steal”

permalink
report
reply
34 points
*

It’s more ''we are so focused on stealing and eating content, we’re accidently eating the content we or other AI made, which is basically like incest for AI, and they’re all inbred to the point they don’t even know people have more than two thumb shaped fingers anymore."

permalink
report
parent
reply
2 points

or “we’ve hit a limit on what our new toy can do and here’s our excuse why it won’t get any better and AGI will never happen”

permalink
report
parent
reply
1 point

All such news make me want to live to the time when our world is interesting again. Real AI research, something new instead of the Web we have, something new instead of the governments we have. It’s just that I’m scared of what’s between now and then. Parasites die hard.

permalink
report
parent
reply
56 points

Every single one of us, as kids, learned the concept of “garbage in, garbage out”; most likely in terms of diet and food intake.

And yet every AI cultist makes the shocked pikachu face when they figure out that trying to improve your LLM by feeding it on data generated by literally the inferior LLM you’re trying to improve, is an exercise in diminishing returns and generational degradation in quality.

Why has the world gotten both “more intelligent” and yet fundamentally more stupid at the same time? Serious question.

permalink
report
reply
29 points

Because the people with power funding this shit have pretty much zero overlap with the people making this tech. The investors saw a talking robot that aced school exams, could make images and videos and just assumed it meant we have artificial humans in the near future and like always, ruined another field by flooding it with money and corruption. These people only know the word “opportunity”, but don’t have the resources or willpower to research that “opportunity”.

permalink
report
parent
reply
21 points

Why has the world gotten both “more intelligent” and yet fundamentally more stupid at the same time? Serious question.

Because it’s not actually always true that garbage in = garbage out. DeepMind’s Alpha Zero trained itself from a very bad chess player to significantly better than any human has ever been, by simply playing chess games against itself and updating its parameters for evaluating which chess positions were better than which. All the system needed was a rule set for chess, a way to define winners and losers and draws, and then a training procedure that optimized for winning rather than drawing, and drawing rather than losing if a win was no longer available.

Face swaps and deep fakes in general relied on adversarial training as well, where they learned how to trick themselves, then how to detect those tricks, then improve on both ends.

Some tech guys thought they could bring that adversarial dynamic for improving models to generative AI, where they could train on inputs and improve over those inputs. But the problem is that there isn’t a good definition of “good” or “bad” inputs, and so the feedback loop in this case poisons itself when it starts optimizing on criteria different from what humans would consider good or bad.

So it’s less like other AI type technologies that came before, and more like how Netflix poisoned its own recommendation engine by producing its own content informed by that recommendation engine. When you can passively observe trends and connections you might be able to model those trends. But once you start actually feeding back into the data by producing shows and movies that you predict will do well, the feedback loop gets unpredictable and doesn’t actually work that well when you’re over-fitting the training data with new stuff your model thinks might be “good.”

permalink
report
parent
reply
5 points

good commentary, covered a lot of ground - appreciate the effort to write it up :)

permalink
report
parent
reply
4 points

Another great example (from DeepMind) is AlphaFold. Because there’s relatively little amounts of data on protein structures (only 175k in the PDB), you can’t really build a model that requires millions or billions of structures. Coupled with the fact that getting the structure of a new protein in the lab is really hard, and that most proteins are highly synonymous (you share about 60% of your genes with a banana).

So the researchers generated a bunch of “plausible yet never seen in nature” protein structures (that their model thought were high quality) and used them for training.

Granted, even though AlphaFold has made incredible progress, it still hasn’t been able to show any biological breakthroughs (e.g. 80% accuracy is much better than the 60% accuracy we were at 10 years ago, but still not nearly where we really need to be).

Image models, on the other hand, are quite sophisticated, and many of them can “beat” humans or look “more natural” than an actual photograph. Trying to eek the final 0.01% out of a 99.9% accurate model is when the model collapse happens–the model starts to learn from the “nearly accurate to the human eye but containing unseen flaws” images.

permalink
report
parent
reply
6 points
*

Remember Trump every time he’s weighed in on something, like suggesting injecting people with bleach, or putting powerful UV lights inside people, or fighting Covid with a “solid flu vaccine” or preventing wildfires by sweeping the forests, or suggesting using nuclear weapons to disrupt hurricane formation, or asking about sharks and electric boat batteries? Remember these? These are the types of people who are in charge of businesses, they only care about money, they are not particularly smart, they have massive gaps in knowledge and experience but believe that they are profoundly brilliant and insightful because they’ve gotten lucky and either are good at a few things or just had an insane amount of help from generational wealth. They have never had anyone, or very few people genuinely able to tell them no and if people don’t take what they say seriously they get fired and replaced with people who will.

permalink
report
parent
reply
4 points

Because the dumdums have access to the whole world at the tip of the fingertip without having to put any efforts in.

In a time without that, they would be ridiculed for their stupid ideas and told to pipe down.

Now they can find like minded people and amplify their stupidity, and be loud about it.

So every dumdum becomes an AI prompt engineer (whatever the fuck that means) and know how to game the LLM, but do not understand how it works. So they are basically just snake oil salesmen that want to get on the gravy train.

permalink
report
parent
reply

Technology

!technology@lemmy.world

Create post

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


Community stats

  • 18K

    Monthly active users

  • 12K

    Posts

  • 553K

    Comments