Researchers from Pritzker Molecular Engineering, under the guidance of Prof. Jeffrey Hubbell, demonstrated that their compound can eliminate the autoimmune response linked to multiple sclerosis. Researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have developed
More work is needed to study Hubbell’s pGal compounds in humans, but initial phase I safety trials have already been carried out in people with celiac disease, an autoimmune disease that is associated with eating wheat, barley, and rye, and phase I safety trials are underway in multiple sclerosis.
It is certainly early, they have not even tested it on animals. Many promising drugs either do not work as believed or have nasty side effects that make them unusable. But we humans have invented many other amazing things. While caution is warranted, just writing it off as impossible is also premature.
Honestly, this is a fair response to an outrageously sensationalist headline. There is promise in this particular style of vaccine, and it deserves further research, but to claim it’s going to cure all these disorders is something so far from the current truth that it really verges on an outright lie.
Yours being in the negative is the whole reason I responded to it, actually. I was hoping my context could make people see that yours was the appropriate stance for those who aren’t hopelessly naive. Sorry it didn’t work!
Because there’s a difference between “dismissive” and “skeptical.” Your comment was dismissive whereas adj16’s was skeptical.
They added subtlety and made a point, you just reacted skeptically to a headline
If you’re surprised by this, you should really put more thought into why your post went negative
My wife has MS. And even though we are of course far from being at a point where the disease will be cured, articles like this give hope.
There are a lot of smart people who are dealing with the topic. Hopefully they can get something solid done soon!
This is really amazing if true. They should not call it a vaccine or else hardly anyone will get it…
I doubt that people suffering from MS, T1, Crohn’s, Celiac etc would be discouraged by the term. It’s not a prophylactic vaccine intended for the general population.
I wonder what the implications for transplant recipients are.
I’ve been following cures like this for years. There are three candidates in phase 2 trials right now that appear to work, they’re mostly figuring out the doses needed and there’s a big question on how long they last. Hopefully permanent but we don’t know for sure.
Diabetics have just been so beaten down by this whole thing. I was told the cure was 10 years away 40 years ago. Even if the technology described here works we could be another 15 years before we see it. Researchers said it could be here as soon as 5 years, which is true if unrealistically optimistic. I believe the cure is coming but I’m not holding my breath until I’m actually in front of a doctor about to receive the cure whatever it happens to be.
I was thinking of forwarding this to a friend with type 1 and remember the tale of misery from the last one I sent. Exactly what you said. She’s 38. Don’t get her hopes up.
Reversing type 1 is a complete lie. Unless you can somehow magically reatore pancreatic cells
You actually can, that’s the easy part surprisingly. The hard part is keeping the body from killing beta cells after you induce their growth which is why it’s not cured yet.
Look up Vertex. They have stem cell derived beta cells they’re looking to put in a pouch to avoid immune response, but AFAIK the production of the beta cells is a solved problem. They implanted those cells in someone and he’s seemingly cured.
https://www.nytimes.com/2021/11/27/health/diabetes-cure-stem-cells.html
The issue is that cure currently comes with life long immunosuppressants.
It’s like all the revolutionary battery technologies, computer storage technologies, fusion, cure for cancer, anything with graphene in it, cure for immune diseases and all that. People just love to write clickbait articles about this stuff.
Developing these ideas in the lab takes decades, and turning those ideas into actual products takes even more time. When you see articles about these topics, you can be pretty sure you’ll never hear about it again.
Edit: Just to be clear: technology is going forward all the time, but news articles tend to fucus on things that are interesting or fascianting, and extrapolate from there. The technologies that actually end up becoming widespread might not be interesting enough to write about.
Sort of, they did find a covid vaccine pretty quickly. I’m hoping this is part of that research.
mRNA vaccines had been in development for about 20 years prior to 2019. We were lucky.
Graphene actually is used in small amounts in a few places today. The difficulty is still in scaling up production.
I won’t really know which computer storage technologies you’re referring to. There are plenty of different ones, most of them just have niche applications or are too expensive to replace today’s SSDs for general use, as SSD technology have gone a long way. It’s a similar story to batteries, honestly. Lithium is still just the cheapest for what it does, but alternatives for niche applications exist.
Fusion needs more funding, no way around that, otherwise the theory is sound.
But of course, it is true there’s tons of clickbait. But promising new developments do exist.
Before SSDs became widespread, the tech news would usually find a way to include an article about a revolutionary new storage technology that could store 100x more than a CD. Yes, that was a long time ago, and no, we didn’t hear from those technologies ever again.
The real reason it takes time is because we try not to harm people even in experimental drug testing. It would be much faster to simply toss shit at the wall and see what sticks, but that’s not exactly humane. So we have to find analogues that hopefully mimick humans will enough, but they don’t really work well. So it takes lots of time to build up enough evidence with those preliminary tests to convince the safety board to allow human trials. Then trials have to slowly scale up to limit the amount of people harmed by unforseen effects with a lot of time between as the safety board reviews the previous results before allowing the next test.
It’s all good to do, but it does make development frustratingly slow sometimes. Especially when people are actively dying waiting for the new drugs.
Looking at the price per kWh for commercial batteries tells me that we are seeing the battery revolution right now.
Graphene is already commercially used in some applications:
There are already very effective cures for some types of cancer (note that the differences between the many types of cancer can be huge and so the effort and time needed to create cures will also be very different. some treatments also are effective but not completely understood yet, like for bladder cancer)
Nuclear fusion devices are commercially used in material analysis (mostly in the semiconductor industry and in ore processing). There are different types in use – some even use thermonuclear fusion on a small scale.
It all seems like super crazy superconductor level tech until it becomes mundane and part of peoples lives … then we stop noticing how amazing it really is.
Oh, I’m not saying that development isn’t happening. I’m just saying that the articles you see on the magazines and papers tends to focus on wild technologies like grinding metals into nano particles and using that as a battery. Yes, New Scientis (or was it Scientific American… can’t remember) actually wrote about that stuff and predicted that cars of the future would use this energy source. Ideas like that get reported bacause they sound cool, while incremental upgrades to plain old lithium ion technology gets ignored by the tech magazines.
I’m really looking forward to seeing graphene and carbon nano tubes being used in various applications. Scaling up your production usually is the real problem though. Even if you’re able to produce a few micrograms of something in the lab doesn’t mean you can actually turn that into a commercial product. The transition from NiMH to Li-ion seemed like that for a while until one manufacgturer (was it Sony or Philips?) took the risk and started making those batteries in massive scale. Consumers loved that, and before long everyone started using this wonderful new technology. When someone takes that risk with graphene, we’ll probably start seeing it everywhere.
It’s a clash between scientists needing to be optimistic about their findings to maintain funding and real people needing it asap. We need to fund more medical research outside of for-profit corporations and increasingly expensive academia
Imagine if there was a global fund for disease cures that all the industrialized nations poured their money and resources into.
If you’re talking about The Global Fund, they only attack very specific diseases, mostly eradicated in industrialized nations but persist due to poverty (like malaria).
I can just imagine the opportunities for corruption in such an organization.
Imagine if the research and development of treatments and vaccines for endemic pathogens and genetic disorders were… you know… socialized
I hear this argument all the time, but the majority of the major research comes from the US [1]. My inclination is that, because the US is for-profit, the cures are developed faster and the science is here. The socialized nations lack, it’s a fact, and it’s certainly not for a lack of resources
It seems like the COViD model worked pretty well. One of these days I’d like to better understand the process, but I believe it was something like ….
Vaccine developed by private companies but with a lot of government funding but more importantly, massive contracts at a fixed price.
I’ll come back in a few hours when I’m on my computer and give you the list. I’m sure others will be interested in it as well.
I responded to my own comment above with more info, check it out here: https://lemm.ee/comment/3624282
What phase 2 specifically if you don’t mind sharing? They mention in this article starting with a phase 1 for celiac and then a phase 1 for MS.
I’ve also seen so many of these over a couple decades now. I have RA and MS and often times while hope can be important. As Red said, hope is a dangerous thing and can drive a man insane.
I also have really complicated relationship with hope. Mainly, I try not to hope as my body seems to be insanely problematic. I am disabled with multiple autoimmune diseases and genetic syndrome. While objectively I find the advancement in treatment interesting and amazing, I personally try not to hope. It is absolutely exhausting to get your hopes up only for the other shoe to drop.
If there was sufficient funding and enough people on it, we surely could have gotten so much further in so much less time.
Of course you can speed up such developments only up to a certain degree. But given the state of so many important research fields, we’ve surely not scooped out the whole potential.
A few people asked for more information about these trials that I referred to above. In theory if you can cure one autoimmune disease you should be able to use the same method to cure any of them. Obviously we don’t know that for certain and diseases like Diabetes has the extra step of inducing the growth of new beta cells to produce insulin (more on that below)
That said, the three trials I referred to are Celiac specific. I have this and T1D so those are the two I’ve been following most closely, but I definitely dive into news on ms or any of the other autoimmune diseases.
Note: all of these entered phase 2 this year. They are in the EARLY EARLY stages of that phase, so we should see results in 2025/26 for these. I am also ignoring any trial not in phase 2. Also note that several diabetes and ms cures are essentially variants of these, and many of them are running in parallel.
KAN-101: This is from Anokion and happens to have a trial in my area, hence it’s the one I know the most about. This one works by targetting the liver where the relevant immune cells are produced. Even in their phase 1 trial they found that patients had a dose dependent reduction in IL-1 (a cytokine that your body releases in the presence of gluten if you’re celiac). As with all these trials they need to determine what dose is needed to be a full cure and is it permanent?
TAK-101: This is an MS cure that was adapted for celiac disease, originally developed by ImmunisanT. They also have several other variants of this one, including T1D. Unfortunately their website seems to be down. Takeda is handling the clinical trials here and last I heard they’re waiting for the celiac results before pushing forward with the others, but they expect them to move quickly at that point. Here’s a video by one of the researchers behind this.
TPM502: I know the least about this one, it’s from Topas Therapeutics and they recently announced the start of phase 2 trials in Finland, Norway, the Netherlands and Sweden. [more]
I should emphasize that there is no guarantee any of these treatments will work and everyone is tired of the latest “breathrough” that we never hear about again. Some of the trails above had to go back to the drawing board after hitting phase 2, TAK-101 is a newer generation of “Nexxvax” which if you google that you’ll find articles about its cancellation.
Then Diabetes has the problem of beta cells needing to be restored or replaced. That’s looking feasible either by transplanting adult cells, stimulating the growth of new ones using stem cells or a similar concept. One proposal hides the beta cells from your immune system entirely inside a scaffold. That last one is more of a new treatment than a cure, but it definitely beats what we have now.
The good news is that work IS being done in this area, progress is being made, and I know at least with KAN-101 they have demonstrated it showing results. The cure is coming. Even if most or all of these trails fails the fact that they’ve seen the results that they have is still really good news.
Again, it’s coming. It’s just not in a hurry.